3D Printing With Gold Nanoparticles Will Make an Impact on Pharmaceuticals
For the first time ever, researchers have succeeded in printing a 3D image with stabilized gold nanoparticles with biodegradable and biocompatible polymer systems. What does this mean for pharmaceutical industry?
University of Seville researchers, in collaboration with the University of Nottingham, created the image with biodegradable and biocompatible systems that have been obtained with 3D-printing techniques. The image chosen for this test was the logo of the University of Seville, as seen above.
This achievement will have applications in the pharmaceutical industry, such as in the preparation of biocompatible biosensors based in gold, which have already been shown to be effective in the detection of carcinogenic cells and tumor bio-markers.
In recent years, additive manufacturing, also commonly known as 3D printing, has been recognized as the ideal technology for applications that require intricate geometries or personalization. Its manufacturing based on layers will reduce general small-batch manufacturing costs in comparison with traditional production methods. This has caught the attention of the pharmaceutical industry, which has seen a gateway to the total personalization of treatment in this technology.
The research was centered on the technique called inkjet printing. This offers advantages such as its high resolution and the possibility it offers of being able to print more than one material during the same printing process. Using this technique, the researchers have proposed the manufacturing of systems that could potentially be used as personalized biosensors based on the conductivity and biocompatibility of gold.
Currently, existing gold inks for Inkjet Printing are based in nanoparticles of this metal, but they are highly unstable, as they bind together easily and are difficult to print. For that reason, the development of stale gold inks that are easy to print with has been invaluable.
The team was led by Ana Alcudia Cruz, of the Department of Organic and Pharmaceutical Chemistry from the Pharmacy faculty at the University of Seville, in collaboration of the group led by Rafael Prado Gotor of the Department of Physical Chemistry, from the Chemistry Faculty at the University of Seville, and Ricky Wilman, from the University of Nottingham (United Kingdom). For the first time, it managed to use polymers (polyurethanes) with a comb structure, which they themselves developed, to generate tiny gold nanoparticles with extremely high stability that was tested over time.
To that end, various polymers were prepared from arabinose, a sugar that is easily acquired in nature and that gives the material developed total biocompatibility and biodegradability, so avoiding polluting residues generated by the traditional polymers that are oil-derived.
For the first time this type of polymer has been used for the preparation of gold nanoparticles. These nanoparticles, obtained from three different chemically functionalized polymers, proved to be sufficiently small (maximum 10nm) to be printed in Inkjet printing and were stable for a period of at least six months. Once the printability of each ink was tested, that which showed the best balance of properties was selected and used to print the logo of our university. In the image, obtained by TOF-SIMS, the gold can be observed (in yellow), which forms the outline of the logo, on a polymer background (in blue). This is the first image of gold nanoparticles stabilized with biodegradable and biocompatible systems that has been obtained with 3D-printing techniques.